
Degree in Informatics Engineering

Informatics Project

PropertEase - A Unified Property Listing Manager

Technical Report

Advisors:

Professor Dr. Osvaldo Pacheco

Professor Dr. Rui Costa

Daniel Ferreira

Students:

Bárbara Nóbrega Galiza – 105937

Diana Miranda - 107457

Miguel Figueiredo - 108287

João Dourado - 108636

Ricardo Quintaneiro - 110056

June 4, 2024

Abstract

Managing property listings across various online platforms can be a cumbersome and time-

consuming task. Each platform has its own interface and requirements, compelling property

owners to manually update details, availability and pricing separately for each listing service.

This process is not only tedious but more prone to errors, such as inconsistencies in property

descriptions, double bookings due to desynchronized calendars and outdated pricing information

that can result in a property owner losing revenue or having unsatisfied customers.

PropertEase is a platform that simplifies property management by centralizing it into a

single interface, automatically updating property details across all services and synchronizing

reservations into a unified calendar.

One additional very important feature is the price recommendation, which enables the user

to keep the price up to market trends through the use of a combined set of algorithms, such

as Machine Learning prediction and Google Trends analysis for real-time demand fluctuations.

By doing this, PropertEase offers a dynamic pricing recommendation and an automatic price

setting functionality to users.

This report outlines PropertEase’s context, requirements, engineering design, features, val-

idation and concluding remarks.

1

Degree in Informatics Engineering
Informatics Project 2024

2

Degree in Informatics Engineering
Informatics Project 2024

Contents

1 Introduction 5

2 State of the Art 7

3 Requirements Gathering 11

3.1 Functional Requirements . 11

3.2 Non-Functional Requirements . 12

3.3 Actors . 14

3.4 Use Cases . 15

3.4.1 Model . 15

3.4.2 Description . 17

4 System Architecture 21

4.1 Architecture . 21

4.1.1 Presentation Layer . 22

4.1.2 Business Layer . 24

4.1.3 Backoffice Layer . 27

4.1.4 Message Queue . 29

4.2 Domain Model . 29

4.3 Internal Lifecycle . 32

4.4 Physical and Technological Model . 39

4.5 Price recommendation algorithm . 40

4.5.1 Property Features ML Model Recommendation 41

4.5.2 Google Trends Analysis Recommendation 42

4.5.3 Internal Price Variation Recommendation 44

4.5.4 Final Price Recommendation . 44

4.5.5 Price Recommendation Lifecycle . 45

5 Results 47

5.1 Price Recommendation . 47

5.2 Use Cases Materialized . 47

5.3 Quality Assurance . 57

5.3.1 Contract Tests . 57

5.4 Usability Testing . 57

3

Degree in Informatics Engineering
Informatics Project 2024

5.4.1 Sample . 58

5.4.2 Method . 58

5.4.3 Results . 59

5.5 Data Correlations . 66

6 Discussion 69

6.1 Usability Tests . 69

6.2 Price Recommendation . 70

7 Conclusion 71

7.1 Summary . 71

7.2 Main Results . 72

7.3 Future Work . 73

8 Appendix A - Business Layer API Documentation 77

8.1 User Service API documentation . 77

8.2 Property Service API documentation . 84

8.3 Calendar Service API documentation . 94

9 Appendix B - Usability Tests 115

9.1 Tasks . 115

9.1.1 Tasks Responses . 118

9.2 Post Task Questionnaire . 123

9.2.1 Post Task Questionnaire Responses . 128

10 Appendix C - Example Property Schema 135

11 Appendix D - Contract Test Source Code Example 137

12 Appendix E - Detailed Sequence Diagrams 139

4

Degree in Informatics Engineering
Informatics Project 2024

1 Introduction

Tourism has always been one of the most important sectors in Portugal’s economy and now

it is no different, representing roughly 15.6% of the country’s GDP in 2022, as seen in Figure 1

(Instituto Nacional de Estatística, 2022). Furthermore, in 2023, overnight stays grew 10.7% and

guests increased by 13.3% compared to 2022 (Instituto Nacional de Estatística, 2024). Now, more

than ever, with the prospect of overcoming the COVID-19 aftermath, there is a palpable sense

of eagerness among travelers to reconnect with loved ones, indulge in long-awaited vacations and

explore new destinations, which Portugal wants to be a part of.

The resurgence of tourism plays a critical role in driving demand for rental properties, as

travelers increasingly seek unique and personalized accommodation experiences beyond tradi-

tional hotels. In this current rental landscape, managing property listing across multiple hosting

platforms in intents to maximize revenue is common, but it doesn’t come without its complex-

ities. The task of synchronizing calendars, setting competitive prices, and efficiently managing

listings poses a complex and time-consuming challenge for property owners, greatly affecting

their ability to attract guests and maximize revenue. In order to address these issues and assist

owners in saving time and maximizing revenue, PropertEase aims to simplify property man-

agement by automating these processes through an innovative solution. Additionally, the goal

is not only to streamline listing management for owners but also to empower them to make

informed and strategic decisions that optimize the performance of their properties through data

collection and detailed analysis.

Figure 1: Portuguese Tourist Balance, Travel and Tourism, 2009-2022

In alignment with the European project ATT - Acelerar e Transformar o Turismo e Plano

de Recuperação e Resiliência, PropertEase aims to gather data and gain insights into, for in-

stance, the correlation between the quantity of websites showcasing a property and its occupancy

rate.

5

Degree in Informatics Engineering
Informatics Project 2024

This report describes the full engineering process behind the development of PropertEase,

from design and architectural decisions to implementation, validation and some critical remarks

of the developed work. The source code repositories are hosted in the PI-PropertEase1 GitHub

organization.
1https://github.com/PI-PropertEase

6

Degree in Informatics Engineering
Informatics Project 2024

2 State of the Art

After conducting a research into products currently available in the market similar to

PropertEase, we elaborated the following overview of the various services and their relevant

features according to our vision and intended use case:

• Holidu2 is a company that promises to transform the vacation accommodation booking

process, making it simpler and faster. They offer a product that can be used by guests to

make their reservations, as well as providing the option for property owners who wish to

centrally manage all their accommodation listings across various platforms to do it directly

in their system. Their product features the functionality to synchronize calendars to

prevent double bookings. Additionally, it conducts market analysis to advise owners on the

optimal pricing for each property to maximize revenue, and enables price synchronization.

Owners need to register to access these services, pay a one-time activation fee, and also

pay commissions for each booking made in their accommodations through Holidu.

• Icnea3 is a product that offers property owners a Channel Manager to manage all their

accommodation listings published on various booking platforms, aiming for centralized

management of all their listings and reservations. It provides real-time calendar synchro-

nization to avoid overbooking, allows users to synchronize rates and prices and applies

differentiated sales strategies for each platform. It also enables the transmission of listing

content (titles, descriptions, and photos) to the various platforms, facilitating the creation

of listings. Besides having all these features, Icnea has a wider reach relative to what it

allows you to do. It has a defined reservation and guest workflow that automates some

of the processes related to the reservation such as: sending a reservation reminder and a

thank you email, elaborating a weekly list of check-ins and checkouts, planning cleaning

staff and managing client’s comments. Moreover, it allows for the personalization of emails

and its sending time, automated payments, and the gathering of statistics related to the

growth of your business and to handle bureaucracy required by government. However,

this product has a monthly cost for the user, which increases according to the number of

properties.

• AvaiBook4 is the most complete among all studied products. Its Channel Manager al-

lows calendar synchronization and custom tariff setting for each platform, thereby enabling
2https://www.holidu.pt/partners
3https://icnea.com/
4https://www.avaibook.com/en/

7

Degree in Informatics Engineering
Informatics Project 2024

price synchronization. Additionally, it offers a Revenue Management System that provides

property owners with essential information about their competitors, enabling them to ad-

just pricing strategies, cancellation policies, communications, etc., according to the market.

Furthermore, it has an incorporated property management system that has features such

as: centralized management of all descriptions, images, amenities and usage rules which

will be automatically synchronized with the different portals through the Channel Man-

ager. It also provides a price range for each date, allowing property owners to intelligently

manage their revenues according to desired strategies. This product has a monthly cost

and offers two types of packages: standard and pro. The cost varies not only according to

the package type but also based on the number and type of properties the user owns.

• Avantio5 is a local accommodation management tool that offers a variety of useful fea-

tures for property owners. With its Channel Manager, it’s possible to synchronize content

and calendars across multiple booking platforms, providing more efficient management.

It also enables the user to create personalized websites or to integrate existing ones with

its software. Additionally, it simplifies rate automation and the definition of occupancy

rules, making the entire process more agile. Another characteristic of Avantio is its ability

to gather and present data. It provides property owners with guest reservation statistics

and trends, facilitating quick and effective data analysis. Furthermore, it allows for cus-

tomization and exporting of reports for a deeper business analysis. All of this is available

through a monthly subscription, ensuring continuous access to all its services.

This listing of property management systems and their characteristics is not exhaustive,

but it is representative of the concerns that were taken into account when designing the solution.

From what it is possible to learn from previous platforms, in any property management system

there are essentially four types of features:

1. Centralization of properties and automated bidirectional interaction with prop-

erty listing websites:

• (Holidu, Icnea, AvaiBook, Avantio) Single calendar that synchronizes every time

someone makes a reservation on any property listing website. This reservation should

propagate to every other website associated with PropertEase. This feature was com-

mon across all different property management platforms;

• (Icnea, Avaibook) Property info page that contains all information related to a prop-
5https://www.avantio.com/

8

Degree in Informatics Engineering
Informatics Project 2024

erty. This information should appear in a listing in all related listing websites and,

if changed, should be propagated accordingly to them. This information should in-

clude name, location, owner info, property photographs, occupancy rules and any

other information to be showcased to the user in relation to the property. This way,

progress is made towards the goal of increasing separation between the platform and

its depending listing websites while interacting with them using a single system.

2. Statistics and maximization of revenue:

• (Holidu, AvaiBook) Market analysis to advise owners on the optimal pricing for each

property based on its characteristics. This way, the property owner can know where

he/she stands relatively to the market and, consequently, make more informed choices;

• (Icnea) Reservation statistics from different points of view such as by accommoda-

tion, region, owner or channel. With this information, the user can have a general

perspective of the business’ well being.

3. Reservation and guest workflow - workflow related to the reservation process, guest

entry and exit and, possibly, property maintenance (it may include mail or message au-

tomation and calendar updates):

• (Icnea) Linking each customer to a property and embedding customer chat on the

platform so that the owner can easily know from which property is each client and

can attend to their needs.

• (Icnea) Sending a reservation reminder to the users when the reservation date is

approaching. This way, the property owner’s credibility and customer relation is

increased while assuring the user that their reservation has been processed. Following

the same reasoning, automating emails to send a thank you message to the customer

welcoming to come back;

• (Icnea) Automated summaries of check-in and check out lists. In this manner, the

property owner can always be aware of the property occupation and can take appro-

priate action if needed;

• (Icnea) Cleaning staff managing features.

9

Degree in Informatics Engineering
Informatics Project 2024

10

Degree in Informatics Engineering
Informatics Project 2024

3 Requirements Gathering

3.1 Functional Requirements

• Property related requirements:

– FR1: the property owner must be able to see different available listing services and

connect to them.

– FR2: a property owner must be able to import their listings and reservations from a

supported property listing website upon connecting to it.

– FR3: a property owner must be able to view their current listings.

– FR4: a property owner must be able to see the details of a property, such as price,

location and amenities. They should also be able to see a URL that redirects them

to their property for each listing service that property is in.

– FR5: a property owner must be able to see, for each property, what reservations have

been made.

– FR6: a property owner must be able to get a price recommendation on a property

according to houses with similar characteristics and to the external market analysis.

– FR7: a property owner must be able to view a calendar with filled slots representing

occupied properties and empty slots representing time slots without reservations.

This calendar should represent the synchronized state of calendars in connected listing

services.

– FR8: a property owner must be able to choose a property and, in the property details

page, set its price to a new value. This should update the price on all other websites

the property is listed in.

– FR9: a property owner must be able to decide, when setting a price, whether it’s the

amount of money they will receive (after commissions are applied) or the amount of

money that will be paid by the customer. Since commissions are different depending

on the listing service, the owner’s property on each website will have the correct value

based on his choice. Example: they want to receive 200€ - Booking.com will have a

204€ cost and AirBnB 206€ (as both websites will take their own commissions).

– FR10: when a reservation is made in a certain website, it must be reflected in all

11

Degree in Informatics Engineering
Informatics Project 2024

other websites - calendars must be synchronized.

– FR11: a property owner must be able to set availability date manually. For example,

when construction work happens for a month or cleaning happens for a day, the

property owner must be able to lock out that particular property from receiving

reservations for the time being.

– FR12: property owner must be able to filter calendar by property, showing only

reservations related to the selected property.

– FR13: a property owner must be able to send emails to customers with a key code

for them to enter the property.

– FR14: a property owner must be able to see the current status of each one of

their properties, to know whether they are currently free, occupied or have a check-

in/checkout soon. They should also be able to filter this list by status.

– FR15: a property owner must be able to choose whether to receive reservations 100%

automatically or work under request where you are required to accept the reservation

manually through a notification.

– FR16: when editing the price of a property, the system must allow the possibil-

ity of considering other factors into the price calculation, such as cleaning cost and

maintenance cost.

• Authentication related requirements:

– FR17: in order to use any features, all users must be authenticated: both property

owners and administrators.

• Administration related requirements:

– FR18: the administrator must be able to remove an user account.

– FR19: the administrator must be able to remove user’s properties.

3.2 Non-Functional Requirements

• Data security:

– Ensure that user data, including property information, is protected against unau-

thorized access, manipulation or loss. The application must guarantee compliance

12

Degree in Informatics Engineering
Informatics Project 2024

with the GDPR (General Data Protection Regulation) 6 and implement encryption

protocols for both stored data as well as for the network connections needed.

– The application must employ industry-standard cryptographic hashing algorithms

to securely hash user passwords before storage. It also should enforce password

complexity requirements (e.g. minimum length, special characters, etc.).

– User and property data must be logically segregated to prevent leakage between

different services.

– Anonimization of users or properties between services should be conducted with the

use of internal IDs.

– Users inputs should be sanitized to avoid common security problems such as XSS,

SQL injection or CSRF.

• Performance and Scalability:

– The application must be capable to handle 100 concurrent users without compro-

mising performance. It must be scalable in order to cope with future growth in the

number of users and volume of data.

– Page load times must not exceed 2 seconds under normal operating conditions.

• Usability:

– The user interface should be intuitive, easy to use and accessible to a wide range of

users, including those with different levels of technology experience. The application

should provide clear guidance and feedback for its users, making navigation and tasks

simple and efficient. This should be validated with usability tests for the application

with a task success rate of more than 68% (Sauro and Lewis, 2016) in total.

• Reliability and Availability:

– The application must be highly reliable and available at least 95% of the day, mini-

mizing downtime and interruptions. It must be able to resiliently cope with failures

and guarantee rapid recovery in the event of problems.

– The Mean Time between Failures (MTBF) for the application should be 30 days and

the Mean Time to Recover (MTTR) should be of 4 hours.
6https://gdpr-info.eu/

13

Degree in Informatics Engineering
Informatics Project 2024

• Compatibility:

– The website should be compatible with a variety of browsers and types of devices.

The percentage of features or components that aren’t seamless between all browser-

s/devices should be less than 10%.

• Interoperability:

– The platform must be able to integrate well with real-estate platforms in order to per-

form its primary functions, such as calendar synchronization, property management,

etc. The downtime of such integration when the platform is under normal operating

conditions should be limited to the service provided by these external platforms.

• Maintenance and Extensibility:

– The application must be easy to maintain and update, with clean and well docu-

mented code. It should allow new features and functionalities to be added efficiently.

To achieve this, it should use a micro-services architecture or similar that focuses

on modularity, ease of extensibility and update or replacement of certain services.

For example, adding a new external listing service should be straightforward and not

require changing code.

3.3 Actors

Table 1: System actors
Actor Role

Property Owner

The main user of the application,

manages one or more properties

through the system

Administrator

Responsible for assuring the smooth

operation of the system and the

compliance with security and legal

requirements

14

Degree in Informatics Engineering
Informatics Project 2024

3.4 Use Cases

3.4.1 Model

Initially, on the requirements gathering phase, an initial Use Case diagram was made,

which can be seen at Figure 2 below:

Figure 2: Initial Use Case diagram for PropertEase.

Within the next iterations, new ideas for features were given by students and the advisors

and some limitations were found, such as the inability to use real listing service APIs, leaving

us to simulate these. This lead to the creation of a new Use Case diagram, the final version,

displayed in Figure 3. In the following diagram, the red dashed outline represent the use

cases and actor that were low priority and would be interesting to have, but couldn’t be done

on time for the MVP.

15

Degree in Informatics Engineering
Informatics Project 2024

Figure 3: Final Use Case diagram for PropertEase.

16

Degree in Informatics Engineering
Informatics Project 2024

3.4.2 Description

Table 2: Use cases’ description

ID Use Case Description

1.1
Import listings from one

or more listing services

A property owner can connect to ex-

ternal listings services and import

all data (reservations and proper-

ties) related to their properties’ list-

ings from those services

1.2
View synchronized

properties calendar

After having listings on our service,

a property owner can view a calen-

dar of the all the events associated

with the properties that are syn-

chronized across all external web-

sites

1.2.1 Filter calendar view

A property owner can filter the

events listed in the calendar by ex-

ternal listing service and by prop-

erty

1.3 View properties list

A list of properties owned/man-

aged by the property owner can be

viewed

1.4
Manage cleaning/main-

tenance events

Property owners can manage events

of cleaning or maintenance for each

property. He/she can create, re-

move or update those events. These

events set the property status as oc-

cupied during that period of time,

as a reservation does

1.5 Edit property details

A property owner can change details

of a property and those details are

then synchronized across the con-

nected services the property is in

17

Degree in Informatics Engineering
Informatics Project 2024

ID Use Case Description

1.5.1
Visit property on cho-

sen linked listing service

Allows the property owner to visit

the property page on a listing web-

site of choice to check if the details

match

1.6 Set property price

A property owner can set the price

of a property and the update should

propagate to all listing services the

property is in

1.6.1
Choose revenue method

based on commission

A property owner can choose if

he/she wants to include or exclude

the commission of a external listing

website when setting the price of a

property

1.6.2
View recommended

price

A property owner can view the rec-

ommended price of a property given

to them by PropertEase’s price rec-

ommendation algorithm

1.6.3
Set extra (cleaning,

maintenance...) costs

The ability to set extra costs to

property prices, if these properties

regularly have cleaning or mainte-

nance occurrences, and consistently

cost the property owner money

1.7

Set automatic price up-

date based on recom-

mended price

The option to allow property own-

ers to set their properties to auto-

matically update their price to the

recommended price upon receiving

price recommendation

1.8

View property events

(reservations, clean-

ing/maintenance

events)

A property owner can view a list of

all the events (reservations, clean-

ing and maintenance) of one of the

properties

18

Degree in Informatics Engineering
Informatics Project 2024

ID Use Case Description

1.9
Send property door key

to client through e-mail

After a reservation is done by a

client, a property owner can send a

property door key code through e-

mail to that client

1.10 View properties’ status

A property owner can view the sta-

tus of all properties on the list of

properties to see if it is free, occu-

pied or has a check-in/checkout soon

1.10.1
Filter properties by sta-

tus

The owner can filter properties on

the properties list by status

1.11 View general statistics

Property owners can view general

statistics of all the properties and

events, such as revenue per prop-

erty, revenue per listing service, rate

of occupation along a time interval,

etc...

1.12

Set reservation accep-

tance type (automatic/-

manual)

A property owner can choose if

he/she wants to automatically ac-

cept reservations or if he/she wants

to do it manually

2.1 Remove user account

Allows the administrator to remove

user’s account on demand, in a case

where its removal needs to be forced

2.2 Remove property

Allows the administrator to remove

a property on demand, in a case

where its removal needs to be forced

19

Degree in Informatics Engineering
Informatics Project 2024

20

Degree in Informatics Engineering
Informatics Project 2024

4 System Architecture

4.1 Architecture

Figure 4: System architecture for PropertEase

The PropertEase system operates according to two different aspects: one related to the

client-side and another one related to data aggregation and availability, thus requiring a segre-

gation of responsibilities. Regarding the data aspect, it is built using metrics measured across

all parts of the system, with a microservices architecture being ideal to measure them first at the

source and afterwards as an aggregate. Each microservice is independent, has a single responsi-

bility (separation of concerns) and should be deployed as a separate unit, allowing an easier and

21

Degree in Informatics Engineering
Informatics Project 2024

better deployment and decoupling. This way, the change or stoppage of one of the microservices

will not affect the proper functioning of the others. This is most important as the system is

dependent on external services that provide the properties and reservations it aggregates and

manages.

4.1.1 Presentation Layer

The presentation layer is a sole microservice layer. The Display Service is responsible

for providing the user interface and handling interaction with the user. It is also responsible for

forwarding the requests to the reverse proxy, which will in turn delegate it to the appropriate

service.

It is implemented as a React7 web application. React is a very popular 8 reactive JavaScript

and TypeScript library for creating user interfaces. The React app was created using Vite

over Create-React-App (CRA) as it is considered deprecated and contains many critical security

vulnerabilities that could lead to security issues in PropertEase. Vite also includes a development

server with Hot Module Replacement (HMR) which speeds up development significantly.

Typescript was chosen over JavaScript due to its static typing capabilities, which makes it

easier to find bugs early on in development, such as accessing null or undefined values, increasing

overall code quality. The TypeScript compiler also catches compiler-time bugs, as opposed to

the dynamically typed and interpreted language JavaScript.

As for styling the user interface, Tailwind CSS9 was used. It replaces the typical ver-

bose and error prone vanilla CSS styling with class-based styles that, in conjunction with IDE

support10, helps to increase developer productivity.

For the state management in this web application, React TanStack Query11 was used. It

allows easy global state management across multiple pages and React components and has direct

support for some specific features we defined as requirements in PropertEase to provide a better

user experience, such as:

• Query caching: queries for data such as a particular user’s properties and reservations

are used in multiple React components, and React TanStack Query has built-in caching

to prevent the need for re-fetching, which wastes network resources and adds unnecessary
7https://react.dev/
8https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
9https://tailwindcss.com/

10https://marketplace.visualstudio.com/items?itemName=bradlc.vscode-tailwindcss
11https://tanstack.com/query/v3

22

Degree in Informatics Engineering
Informatics Project 2024

load to the API layer;

• Query invalidation: queries can be cached, but, as new data gets created and data changes,

it is crucial to have a mechanism for invalidating cached data to prevent stale data;

• Periodic re-fetching: as new reservations come in, it is crucial to show them to the user as

soon as possible. This is another mechanism to prevent stale cache data, as the built-in

cache can be periodically invalidated to detect new data by re-fetching;

• Loading states: know when a query is in progress and display the page in a loading state,

so the user can understand the page is not yet ready;

• Error states: know when a query failed in order to show error messages for direct feedback

to the user.

For displaying calendars with property event data (reservations and cleaning/maintenance

events) we used FullCalendar12, as it fit our requirements. It supports multiple views of cal-

endars, such as fully detailed timeline view, with the possibility to aggregate events based on

some attribute (for PropertEase, we aggregated events by property) and a smaller calendar that

displays events in a concise way, allowing for a view of events in a particular week.

In order to allow users to create management events, such as cleaning or maintenance

events, we needed to allow users to pick a date and a time (simultaneously) in which those

events occur. For that purpose, we used Flatpickr13, as the default HTML date-time input does

not fully support all browsers (in particular, Mozilla Firefox14) and we don’t want to hinder our

users’ experience if they use those browsers 15.

Table 3 has a brief description of all pages available to access in Display Service.
12https://fullcalendar.io/
13https://flatpickr.js.org/
14https://www.mozilla.org/en-US/firefox/new/
15https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/datetime-local

23

Degree in Informatics Engineering
Informatics Project 2024

Table 3: Description of all available pages in Display Service
Path Description

/ Home page. Has a small description of PropertEase’s features. The

default page you see when not logged in.

/dashboard The main dashboard the user can access to see their reservations in a

small calendar and their properties in a table with the property’s current

status

/properties List of properties page. Contains information related to each property’s

status (free, occupied, check-in soon, checkout soon), the nearest reser-

vation’s arrival and departure times and price.

/property/:id Shows property information for property with given id parameter. In

particular, shows all of the property’s details, and has tables for reser-

vation, cleaning and maintenance events. This is also where users can

send e-mails for opening the door to their properties to clients, and also

create, update or delete cleaning and maintenance events.

/calendar Has a full view of a filterable calendar. Allows for filtering by property

and by listing platform.

/integrations Page for users to connect to external listing services, and therefore import

their properties and reservations.

4.1.2 Business Layer

As the name indicates, the business layer is responsible for the business logic of the sys-

tem. It communicates with the upward layer through a reverse proxy, implemented using

nginx16, which will redirect and delegate the requests to the appropriate microservice. Further-

more, this component allows for load balancing and contributes to enhance the scalability and

security of the system, as no service will be directly exposed to the end user. The microservices,

implemented using FastAPI 17, which handle the business logic of the system are the following:

• User Service - This service is responsible for handling user related actions, such as

creating an account and signing in, supported by Firebase Authentication18. As we will

later show in the domain model section, the information saved in this microservice database
16https://nginx.org/en/
17https://fastapi.tiangolo.com/
18https://firebase.google.com/docs/auth/

24

Degree in Informatics Engineering
Informatics Project 2024

not only contains regular user information but also to which external services the user is

connected to and intends to import properties and receive reservations from. This being

the case, this will be the microservice that periodically sends requests through the message

queue to import new properties or reservations. However, that doesn’t mean that the User

Service will be the one receiving the requested data as will later be shown.

• Property Service - This service is responsible for storing and providing any data related

to properties, including pricing data. As this service contains the property information, it

will also:

– Generate events each time the user updates property information, as these changes

need to be propagated to the external listing websites where that property actually

is;

– Distinguish between different properties through their address, upon importing them.

If a property for the same user with the same address already exists, then it shouldn’t

be overwritten with the newly imported one. In the best scenario, it would even make

sense for there to be a conflict resolution algorithm that minimizes the amount of data

lost in the aggregation. This would even make more sense when thinking about the

diversity of the data present in different property listing websites. The main objective

would be to gather all that data in the property service database and every time an

external property listing website wants to showcase one of the properties, it would

only use the information that it needs. However, keeping track of what properties

are from what external listing websites and connecting those properties to the one

saved on this service’s database is beyond the scope of this service, as it will later be

discussed;

– Send requests to the analytics services in two different schedules: 1. send the data it

needs for the price recommendation algorithm and 2. send data to compute statistics

that are relevant to the ATT project.

• Calendar Service - This service is responsible for orchestrating reservations between

the various external websites and for their confirmation or denial in an automatic way,

keeping calendars synchronized across multiple listing services. However, PropertEase

isn’t only an aggregation system where a property owner can see all of his properties and

reservations from multiple property listing websites. It actually helps them to manage their

properties, by allowing them to create other events in their calendar that will automatically

25

Degree in Informatics Engineering
Informatics Project 2024

be propagated to those websites, marking them as occupied for the respective time frame

(i.e. period of time where the property is under maintenance and therefore cannot receive

people). The creation of these events and the generation of the related events to be

propagated to the external websites are controlled by this service as well.

Table 4 shows a non-exhaustive list of exposed endpoints and description of their behavior,

related to business layer microservices. Full documentation in Swagger19 format can be found

in Appendix A.
19https://swagger.io/

26

Degree in Informatics Engineering
Informatics Project 2024

Table 4: Non-exhaustive business layer API endpoints by Microservice
Microservice Operation Endpoint Description

Calendar Service POST /events/reserva-

tion/{reserva-

tion_id}/email_key

Receives a key code to

be sent by e-mail to the

client associated with

the reservation with ID

equal to ’reservation_id’.

Property Service PUT /property/{prop-

erty_id}

Updates the property

details for the property

with the specified prop-

erty ID. Also propagates

changes to the external

listing services counter-

parts.

Calendar Service POST /events/management/-

cleaning

Creates a new cleaning

event with the specified

time frame and creates

corresponding events in

external listing services

to close down the prop-

erty during the cleaning

time interval.

Calendar Service GET /events Returns all events for

a certain property, in-

cluding reservations and

cleaning/maintenance

events, in a general

Event schema.

4.1.3 Backoffice Layer

The backoffice layer is divided in two different types of microservices, the first one being

website wrappers. Each website wrapper is a module that encapsulates each property list-

ing website (namely their respective API’s) and is responsible for interacting with them and

27

Degree in Informatics Engineering
Informatics Project 2024

propagating changes to and from them. As it wasn’t possible to get access to a real API for

our use case, we simulated API’s for three made-up listing services: Zooking, ClickAndGo and

Earthstayin.

On one hand, if a user makes a reservation in any of the booking websites, then that

reservation should be propagated to all other property listing websites and should appear in the

property owner’s calendar.

On the other hand, if the property owner decides to change the price of one of their

property listings, that change should also be propagated to all of the property listing websites.

Therefore, each wrapper generates events that use data coming from them. These events

can be triggered as a consequence of certain actions on external listing websites (e.g. client

booking a reservation for existing property, property owner creating a new property) or can be

triggered within the system after the component processes property/reservation import requests

or property details update requests (this request results from the update of the details of a

property in the Property Service). For this to happen, it’s required the existence of a database

that keeps track between the mapping of internal IDs of the properties and reservations on the

microservices and external IDs of those same properties and reservations on the external API’s.

It’s important to note that each website wrapper constitutes a different microservice and should

work independently from the others.

The fact that all microservices share one database doesn’t go against this as each wrapper

only uses their designated tables. Nothing would prevent each website wrapper of having an

independent database in the future. The fact of using only one is merely an option derived of

just being an ID mapping database, of the number of external services being supported and to

decrease the complexity of development.

The communication between the Business and Backoffice layer should be bidirectional

and is insured through a message queue for asynchronous communication, creating here an

abstraction layer. Therefore, if a new property listing service is to be supported, it would just

be necessary to create a new website wrapper that would start to generate and process events

seamlessly relative to the Business Layer.

In addition, the Analytics Service is responsible for regularly calculating the recommended

price for each property and sending properties data to the Elasticsearch database in order to ease

the retrieval of aggregation analytics based on them. Both actions are triggered by scheduled

asynchronous requests from the Property Service sent to the message queue. It employs the

28

Degree in Informatics Engineering
Informatics Project 2024

ELK20 stack, which simplifies the visualization of data for analysis purposes.

4.1.4 Message Queue

The message queue, implemented using RabbitMQ21, is be used to pass messages asyn-

chronously between the Business and Backoffice layers. In the context of PropertEase, messages

indicate events such as property details changes (pricing changes or other details changes), users

connecting to listing services, scheduled reservation and property importing, which require com-

munication among multiple components of the architecture.

Messaging is also used to periodically request the Analytics Service for price recommen-

dations, given the properties existing in the Property Service. It is also used to send property

data (without personally identifiable information, for security reasons) to the Analytics Service

to be used for data analytics using Kibana22, which allows for easy data visualization through

queries using the KQL (Kibana Query Language).

4.2 Domain Model

As the previous section detailed, our architecture follows the microservices pattern, and

for that reason, there are multiple database to handle incoming data. This section depicts the

conceptual modeling of all data PropertEase handles.

Figure 5 represents data modeling for the User Service, which holds all information related

to users.

Figure 5: User Service Data Model

Figure 6 represents data modeling for the Property Service, which holds all data related
20https://www.elastic.co/pt/elastic-stack
21https://www.rabbitmq.com/
22https://www.elastic.co/kibana

29

Degree in Informatics Engineering
Informatics Project 2024

to properties. Since property data coming from different listing services is expectedly different

among them, we decided for a NoSQL database, particularly document-oriented using Mon-

goDB23.

As we handle data coming from multiple external APIs, their schema differ. For that

reason, we modeled Property data as a combination of the most common attributes across

popular listing services. We analyzed the schema of three different listing services - Airbnb 24,

Booking.com 25 and Vrbo 26 - and ended up with the model found at Figure 6.

An example schema for a property was included in Appendix C.

Figure 6: Property Service Data Model

Figure 7 represents data modeling for the Calendar Service, which holds all event (reser-

vation, cleaning and maintenance) information. The database holding this data uses a relational

database, particularly PostgreSQL27.

As there are two different sources of events - interval events (created by the user - mainte-

nance and cleaning) and external events (obtained from external API - reservations) - we used
23https://www.mongodb.com/
24https://www.airbnb.com/
25https://www.booking.com/
26https://www.vrbo.com/
27https://www.postgresql.org/

30

Degree in Informatics Engineering
Informatics Project 2024

inheritance, which increases extensibility greatly. If there is a need to add a new type of event

in the future, we can simply extend one of the existing classes and work from there.

Figure 7: Calendar Service Data Model

Figure 8 represents data modeling for the Website Wrappers. These require a mapping

between external and internal property and reservation identifier, so that they can efficiently

detect changes occurring in the outside, and propagate changes that the user made. As this

database is only used for mapping IDs from external services to internal services, it is supposed

to be simple, and for that reason, we used SQLite28, which prides itself for being a small, fast

and self-contained implementation of SQL.
28https://sqlite.org/

31

Degree in Informatics Engineering
Informatics Project 2024

Figure 8: Website Wrappers Data Model

4.3 Internal Lifecycle

PropertEase main goal is to reduce manual work by property owners regarding prop-

erty management. Therefore, PropertEase is responsible for the automation of these processes,

namely the edition of property details, the synchronization of new properties and the synchro-

nization of new reservations (including possible cancellation of a reservation). This section will

dive further into the discussion of the architectural workflows behind these features.

32

Degree in Informatics Engineering
Informatics Project 2024

Figure 9: UML Sequence Diagram of edition of property details by a property owner

Figure 9 presents the full sequence diagram in order for a property to be updated not only

on the Property Service, but also on all external services the property owner is connected to.

However, this process is completely transparent to the user, as the propagation of the update

to the wrappers, and consequently to external services, happens asynchronously.

1. The property owner updates property details through the user interface provided by the

Display Service;

2. The Display Service calls a PUT request in order to update the matching property on the

Property Service;

3. The Property Service processes the update and updates the corresponding property in the

MongoDB database;

4. The Property Service broadcasts through the message queue a PROPERTY_UPDATE

message to all wrappers;

5. The Property Service returns the updated property. It is worth highlighting that the

property updated in the Property Service database was returned as soon as the messages

were sent to the message queue. The service doesn’t wait for the processing of the tasks

related to such messages as all the propagation behavior happens asynchronously.

6. Therefore, this process is completely transparent to the user that will immediately see the

33

Degree in Informatics Engineering
Informatics Project 2024

updated property on his dashboard.

7. Then each of the website wrappers will process the requests when they proceed to consume

the PROPERTY_UPDATE message. Assuming that the edited property is registered on

Zooking and ClickAndGo services, each of the wrappers would process the request in the

following way:

• Earthstayin Wrapper - The wrapper will query for the property internal ID on

its ID mapping database. Since the property isn’t registered, the return value of the

query came out empty. Thus, the wrapper will not proceed with the update request.

• ClickAndGo Wrapper - The wrapper will query for the property internal ID on

its ID mapping database. Since the property is already registered, the return value of

the query wouldn’t be empty. The only thing left to do is consuming the appropriate

API endpoint with the corresponding external ID in order to update the property in

the external service. There is no need to update anything on the wrapper’s database

as it doesn’t contain any property sensitive information;

• Zooking Wrapper - Since the property is also registered in this service, the wrap-

per will proceed in the same way as the ClickAndGo wrapper differing only on the

conversion schema for the property and the API and corresponding endpoint.

34

Degree in Informatics Engineering
Informatics Project 2024

Figure 10: Simplified UML Sequence Diagram of scheduled flow to import properties from

external services

Figure 10 presents a simplified sequence diagram that illustrates the scheduling of property

imports across multiple listing services. The detailed version of this diagram can be found in

Appendix E in Figure 38.

1. The User Service periodically sends a request to import properties for a list of users with

their services;

2. Each website wrapper fetches all user’s properties from the given external service API;

3. Then, the website wrapper checks if each of the returned properties exists in the corre-

sponding ID mapping database;

4. Each property that doesn’t exist is then persisted in the ID mapping database;

5. All new properties are returned asynchronously to the Property Service;

6. The Property Service checks for each of the received properties if there is an existing

35

Degree in Informatics Engineering
Informatics Project 2024

property with the same address, which was the defined way to detect duplicated properties.

7. If a duplicated property is detected, the service from which it was imported gets added to

the list of services for that property. The details of the property persisted in the database

remain unchanged. However, for that to happen, a property with the same address for

that user had to previously have been propagated from other external listing service.

8. If the imported property is a new property, then the property with all of its details is

persisted into the database.

36

Degree in Informatics Engineering
Informatics Project 2024

Figure 11: Simplified UML Sequence Diagram of scheduled flow to import reservations from

external services

Figure 11 presents a simplified sequence diagram that illustrates the scheduling of property

reservations across multiple listing services. The detailed version of this diagram can be found

37

Degree in Informatics Engineering
Informatics Project 2024

in Appendix E in Figure 39.

1. The User Service periodically sends a request to import reservations for a list of users with

their services;

2. Each website wrapper fetches all user’s incoming reservations from the given external

service API;

3. Then, there are two conditional branches according to the existence of the reservation in

the website wrappers ID mapping database:

• If the reservation already exists, but its status was changed to canceled:

(a) Update reservation status stored in mapping database to CANCELED;

(b) Notify that the reservation was canceled to the Calendar Service. Then, the

change of status of the reservation will be propagated to the Calendar Service’s

database;

(c) Then, the Calendar Service will notify all wrappers to cancel the reservation.

(d) Each of the website wrappers will propagate the changes to the external ser-

vices. Bear in mind this only happens for the website wrappers which have the

corresponding property (and consequently the reservation) in their mapping ID

table.

• If it’s a new reservation:

(a) The website wrapper will store the reservation in the ID mapping database -

including the internal and external ID of the reservation and the respective reser-

vation status;

(b) Then, notify the Calendar Service about the new reservation;

(c) If there is an overlapping event with the new reservation, then notify the website

wrapper the reservation came from so that it can cancel it. When the wrapper

receives this request, it should call an endpoint to cancel the reservation and

update the reservation status on the id mapping database;

(d) If there isn’t an overlapping event, then store the new reservation and propagate

it to all wrappers.

38

Degree in Informatics Engineering
Informatics Project 2024

(e) Each of the wrappers can now store the reservation in their ID mapping table and

consume the endpoint of their respective API to create/propagate the reservation.

4.4 Physical and Technological Model

Figure 12: Deployment Diagram

Figure 12 presents the physical architecture of the system, detailing each component’s

technology and providing a description on how the components will interact between each other.

In terms of deployment, each component will operate in its own Docker container for

39

Degree in Informatics Engineering
Informatics Project 2024

better operational efficiency, isolation, and security. Communication between the components

will be restricted by networks, as follows:

• The Display Service communicates only on the ’frontend’ network, through which it com-

municates with the Reverse Proxy. Only these two components run on this network,

ensuring that the display service cannot communicate with any other components.

• The Reverse Proxy, besides running on the ’frontend’ network, also runs on the ’backend’

network. This allows it to communicate with the Calendar, User and Property Service.

• Each service in the business layer has its own network to communicate with its respective

database. Additionally, all of them run on the ’message broker’ network to communicate

with the message queue.

• The Message Queue runs on three different networks to communicate separately with the

Website Wrappers, the Analytics Service, and the Calendar, User, and Property services.

• All website wrappers runs on a single network to communicate with the message queue.

• The Analytics Service runs on two networks: one for communication with the message

queue and another for communication with its database.

This network separation is important for the optimization of performance and security. It

reduces congestion and latency, provides better control over access, and supports scalable and

resilient system operations. This way, proper communication and maintenance can be ensured

to sustain robust and secure architecture.

4.5 Price recommendation algorithm

For the price recommendation, three different algorithms are used: the first one (Figure

13.1) uses a collection of the property features (not including the price) to feed a machine

learning model, produces the median of the predicted property prices and recommends a price

based on the difference on features from each property to the median property; the second

(Figure 13.2) uses the location of each property to fetch current trends tied to that location

on Google Trends and reflects it’s variation on the recommended price; and the third (Figure

13.3) calculates average internal (i.e. only properties linked to PropertEase) price variation and

recommends the detected variation to properties which had no variation whatsoever.

40

Degree in Informatics Engineering
Informatics Project 2024

Figure 13: Simplified diagram of the price recommendation process

4.5.1 Property Features ML Model Recommendation

The goal with this component is to obtain the median property price and recommend the

other prices in comparison with the median. A Random Forest Regression model is used for

predicting each property’s price, with the input features being: number of bathrooms, number of

bedrooms, number of guests (allowed per stay), number of beds, number of amenities, latitude

and longitude. The option to use this model, these features and how to obtain them was

inspired by a Jupyter Notebook ”Helping people in Lisbon to predict Airbnb prices” (Freitas,

2022) published at Kaggle, which was found to be the most adequate for the task after systematic

research. The same Notebook also inspired the usage of the dataset for training, which is the

2021 Lisbon Airbnb data (InsideAirbnb, 2024).

To obtain the median property price, each property is sent individually (its features) to

a Random Forest Regression model and then the median property in terms of price is obtained

from the list of predictions. Next, each property is compared to the median property on each

feature, and according to defined weights 29, the price recommended will rise or decrease based

on the result of the total weighted difference between features. The formulas 1 and 2 describe

better this calculation: in 1, for each property p with n features with the values p0, p1 ... pn,

and for the median property m with the features values m0, m1 ... mn, the total difference d is

calculated using the feature weights wi. Then, the total difference d is used in 2 to calculate the

recommended price for each property, where (1+d) represents the percentage difference applied

upon m, which is the median property price.
29The weights were defined based on own observation and judgment

41

Degree in Informatics Engineering
Informatics Project 2024

Table 5: Weights for feature comparison
Number of bathrooms 0.03

Number of bedrooms 0.05

Number of beds 0.08

Number of guests 0.07

Number of amenities 0.02

d =

n∑
i=0

(pi −mi)wi (1)

r = m(1 + d) (2)

4.5.2 Google Trends Analysis Recommendation

In order to obtain external demand regarding each location, a Google Trends analysis

component was incorporated. Google Trends has constantly been used in different areas to

predict interest in certain subjects, being tourism one of the areas with a increasing number of

papers published (Dinis et al., 2019). For the scope of this project, it is used to recommend

property prices based on the rise or decrease of the Google Trends search value given the property

location. That way, when a big event is announced, for example, and people start searching

on google for details about it or for accommodations, general information about the city, tour

tips and/or more, that demand is perceived by the algorithm and a rise on price is suggested.

Additionally, when the event is over, the value of searches decreases, causing the algorithm to

adjust the recommended price down to around the original normal price.

In order to obtain that variation, a request is made daily in the end of the day to SerpAPI,

a Google scrapper30, which then returns a list of the relative number of searches (0-100) made

for each day since one month ago. Next, the percentage difference between today and yesterday

is computed, then used on an logarithmic equation (3 for positive and 4 for negative differences)

to define the corresponding price variation pv. The reason for using a logarithm is to prevent

high variations of causing a direct, unrealistic, price variation. Also, it was defined a minimum of

10% increase or decrease to actually apply the formula, given small variations aren’t useful to be

reflected in this scenario. In those cases where variation is less then 10%, the price recommended
30https://serpapi.com/

42

Degree in Informatics Engineering
Informatics Project 2024

by the algorithm is the property own current price.

pv = log10
x+ 0.3

4
+ 1 (3)

pv = (−1) log10
x+ 0.3

4
− 1 (4)

After calculating price variation, the recommended price is calculated as shown in 5:

r = p(1 + pv) (5)

The reason for choosing 0.3 and 4 was to obtain a curve that results on reasonable values

and has 0.10 as root, while the translation of plus/minus one was done to make the function

positive/negative. Figure 14 shows equations 3 and 4 as functions. Both functions are limited

to a maximum of one in absolute value because variations higher than that are forced back to

one/minus one, since in cases of, for example, 99% variation, the function would output 2̃.39,

which wouldn’t be appropriate for price fluctuation.

Figure 14: Logarithmic functions used for price recommendation Made with Geogebra

https://www.geogebra.org/classic?lang=pt-PT

Moreover, in order to avoid possible pitfalls, two different checks were implemented. The

first is a ”bad trend” check, done before sending a request for the search values. This checker

sends a request to the API to retrieve the related topics to the property location and verifies if

43

Degree in Informatics Engineering
Informatics Project 2024

any word that would indicate a negative event, such as ”disaster”, ”flood”, ”war” or ”tragedy”,

is present in the list returned. If that’s the case, the trend percentage difference is not applied,

and the price recommended will be the property own actual price. This is done in order to not

recommend a price increase in cases where tourism wouldn’t be actually benefited.

As for the second check, it is done after the recommended price is calculated, and it

verifies if it is lower than the Property Features ML Model component recommendation. In

that case, the price recommended will be also the property own current price, since the trends

recommended price would be too low and unrealistic, and using it would have a substantial

negative impact on the final recommended price.

4.5.3 Internal Price Variation Recommendation

This component is responsible for detecting price variations within the PropertEase prop-

erties for each location and reflect them on properties in the same location that didn’t follow.

The goal with this approach is to be able to discover a trend that wasn’t perceived by the

Google Trends analysis. In that sense, if a big event or any other factor causes property owners

to collectively increase or decrease the prices, this component will reflect that variation on the

recommended price.

The algorithm for this component is simple: for each location, the mean of the old prices

(updated every time the price recommendation is requested) and of the current prices are cal-

culated. Then, if the absolute value of the percentage difference between them is greater than

or equal to 10%, this difference will be reflected on each property that had no changes from the

old price to the current price.

4.5.4 Final Price Recommendation

After obtaining the recommended prices from each component, the final price recommen-

dation is calculated as their weighted average. The weights, as shown in Figure 13, were defined

as 30% for the Property Features ML Model component, 40% for the Google Trends Analysis

component and 30% for the Internal Price Variation component. That way, each component can

balance the result from the others while still leaving a margin for the Google Trends Analysis

to have a higher impact, which is presumably the most accurate and representative one.

44

Degree in Informatics Engineering
Informatics Project 2024

4.5.5 Price Recommendation Lifecycle

The price recommendation lifecycle can be visualized in Figure 15. It starts with the

trigger of the scheduled function at Property Service, that runs daily at 10:30 p.m. (22:30)

UTC. This function sends a message to the message queue requesting the price recommendation

from the Analytics Service, with a list of all system properties. After receiving it, the Analytics

Service main module calls the price recommendation functions from each component (in the

diagram, ”model recommendation” corresponds to the Property Features ML Model component,

”internal price recommendation” corresponds to the Internal Price Variation component and

”trends recommendation” corresponds to Google Trends Analysis component). Finally, the final

price recommendation is calculated with a weighted average, as previously explained, and sent

to the Property Service through the message queue.

Figure 15: Price recommendation sequence diagram

45

Degree in Informatics Engineering
Informatics Project 2024

46

Degree in Informatics Engineering
Informatics Project 2024

5 Results

5.1 Price Recommendation

Since the usage of real property prices was not viable and simulated properties had to

be used, it isn’t possible to obtain general results from the price recommendation feature. The

only aspect that can be measured is the model prediction, and to do that, metrics such as R2,

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used. In Table 6,

the results were obtained from training and testing with only 2021 Airbnb Lisbon data from the

InsideAirbnb website (InsideAirbnb, 2024). The division for the train and test subsets was 0.75

and 0.25, respectively.

Table 6: Random Forest model results for Lisbon testing
RMSE 20.77

MAE 13.95

R2 69.35%

5.2 Use Cases Materialized

This section describes the implemented use cases and their materialization into tangible

pages, as part of our user interface, represented by images with numbered tags. By mentioning

’Figure 10.1’, the reader should be looking at the tag with number 1 in Figure 10. The title for

each of the following sub-sections includes the name and identifier of the use case detailed in it.

A list of these use cases, along with their identifier (ID) and description can be found in Section

3.4.2.

Import listings from one or more listing services - ID: 1.1

This is one of the core use cases of our system, and is a requirement to effectively use the

rest of the system, as it imports the user’s property listings from external listing services into

PropertEase.

This use case can be achieved in the page represented in Figure 16. Users click on the

Connect button, and a full import properties and reservations workflow will be triggered in the

background.

47

Degree in Informatics Engineering
Informatics Project 2024

Figure 16: Channel Manager page where users can connect to external listing services and import

their listings

View properties list - ID: 1.3 / View properties’ status - ID: 1.10 / Filter properties

by status - ID: 1.10.1

Both the View properties list and View properties’ status use cases are materialized in

two different locations in our system:

1. In the Dashboard page, which has a small table with the property list, with the goal of

quickly check the status of any given property. This is represented in Figure 17.1 and 17.3.

2. The Properties page, whose difference compared to the Dashboard is to show more infor-

mation about the property, such as its name, address, current price, and current status.

This is represented in 17.2 and 17.3.

48

Degree in Informatics Engineering
Informatics Project 2024

Figure 17: Dashboard and Properties page, showing a list of properties, their status

49

Degree in Informatics Engineering
Informatics Project 2024

View events calendar - ID: 1.2 / Filter events by service and/or property - ID: 1.2.1

The View synchronized properties calendar and Filter calendar view use cases occur

in our system as follows:

1. In the Dashboard page which includes a condensed timeline view to quickly visualize all

events within a weekly time frame, as per Figure 18.1.

2. In the dedicated Calendar page which provides a detailed timeline and filtering options,

allowing users to apply various filters to customize their view according to specific criteria

(platform and/or property). This is represented in Figure 18.2 and 18.3.

Figure 18: Calendar page, showing a timeline view of events allowing them to be filtered by

platform or property, and Dashboard’s weekly calendar view

50

Degree in Informatics Engineering
Informatics Project 2024

Set property price - ID: 1.6 / Choose revenue method based on commission - ID:

1.6.1 / View recommended price - ID: 1.6.2 / Set automatic price update based on

recommended price - ID: 1.7

Figure 19 shows 4 use cases about price related operations:

• In 19.1, a button can be seen that, when clicked, opens a modal to update the property

price, materializing the use case Set property price.

• In 19.2, there’s a small text box highlighted by a tint of green, showing the price recom-

mendation for this property, calculated by our dynamic pricing algorithm, materializing

the use case View recommended price.

• In 19.3, there’s a checkbox that dictates whether the price update will consider commission

or not. If it is checked, the price update will be as such that the user receives whatever

value he set - for example, if user sets 90€ and checks the checkbox, price updates might

propagate as 92.70€ for an external service with 3% commission, so that the user will

receive 90€ after commission is taken. This materializes the use case Choose revenue

method based on commission.

• In 19.4, there’s a checkbox with a label and a small tool-tip related to updating the

price automatically according to the recommended price for this property, as given by our

dynamic pricing algorithm. This materializes the use case Set automatic price update based

on recommended price.

51

Degree in Informatics Engineering
Informatics Project 2024

Figure 19: View of Property Details page, including the Edit price modal

Edit property details - ID: 1.5

Figure 20 shows a view of the Property Details, with blue squares around operations that edit

multiple fields of the property, as defined by the Edit property details use case. Whenever these

buttons are clicked, they open a modal to update the field they refer to.

For example, when the button referenced by Figure 20.1 is clicked, the modal represented

in Figure 21 is opened, allowing users to add a new bathroom including what fixtures that

bathroom has, editing the Bathrooms field in the process.

52

Degree in Informatics Engineering
Informatics Project 2024

Figure 20: View of Property Details page, showing property details

Figure 21: Modal for adding a new bathroom to the selected property, editing its Bathrooms

field

53

Degree in Informatics Engineering
Informatics Project 2024

View property events (reservations, cleaning/maintenance events) - ID: 1.8

In the Property Details page it is provided a detailed view of property-specific events such as

reservations, cleaning and maintenance activities within their own tabbed sections (see Figure

22.1. Reservations are depicted in Figure 22.2, while cleaning events are shown in Figure 22.3.

Figure 22: Reservation and cleaning tables from a Property Details page

Send property door key to client through e-mail - ID: 1.9

Figure 23 shows the reservation table, and Figure 23.1 is highlighting a button, that when

clicked, opens a modal with a form where users can input a key code to be sent to the reservation

client e-mail, as a means to open the door to this property. Clicking 23.2 triggers the request

and subsequent e-mail. A button to randomize key codes was also included - it generates a 6

characters long numeric string, but is completely optional, as the user can input whatever they

want into the input field. All this materializes the ”Send property door key to client through

e-mail” use case.

54

Degree in Informatics Engineering
Informatics Project 2024

Figure 23: Reservation table highlighting the Send key code to client button, and its correspond-

ing modal

Manage cleaning/maintenance events - ID: 1.4

Figure 24 shows both the Cleaning and Maintenance events table, including events related to

both tables. Clicking the green button highlighted at 24.1 will open the modal shown in Figure

25, which allows users to create a brand new event of the requested type, based on the selected

tab (Cleaning Events/Maintenance Events). Creating either events triggers the workflow of

closing off the relevant time interval in the external services this property is found in, in order

to synchronize calendars. Clicking the buttons at 25.2 and 25.3 also allows editing and deleting,

respectively, these events.

55

Degree in Informatics Engineering
Informatics Project 2024

Figure 24: Cleaning/Maintenance events tables, showing their kind of events respectively, al-

lowing the user to also create new ones and edit or delete existing ones

Figure 25: Modal for creating new cleaning/maintenance events

56

Degree in Informatics Engineering
Informatics Project 2024

5.3 Quality Assurance

For assuring the quality of PropertEase, we conducted tests on two fronts: usability tests

for our user interface, and contract tests on our website wrappers. Usability tests were conducted

late on the project, when most use cases were developed and the system was at an MVP level.

The contract tests are supposed to serve as a safety net, used to detect API schema changes in

our supported external services, which might break wrappers if changed.

5.3.1 Contract Tests

The one place coupled to the supported external services API schemas in our architecture is

the website wrappers, since we directly interact with them whenever any changes in PropertEase

need to be propagated, or when we need to detect new changes from external services and register

them in PropertEase.

In order to guarantee that breaking schema changes are detected and acted upon quickly,

we developed contract tests with pytest31 for each one of the supported external APIs. These

tests fetch data from the external APIs using the requests32 library, such as properties and

reservations, and check the returned data schema against an expected schema. Using pydantic
33, a python library for data validation, our tests validate against a pre-defined schema (which

is always the most recent API return schema), and expect that this schema is exactly met: if

any extra fields are returned, tests fail, as this means that new data might have been added to

the API schemas; if any field changed name, tests fail; if any field was removed, tests fail.

A source code example can be found in Appendix D, which displays contract tests devel-

oped for the (simulated) Zooking external listing service API.

5.4 Usability Testing

After having a stable MVP with the core use-cases implemented, it was time to conduct

usability tests, to gather some feedback regarding user experience when using our system. We

had the opportunity to carry out these tests with fellow University of Aveiro students, in the

Human-Computer Interaction course.
31https://docs.pytest.org/en/8.2.x/
32https://docs.python-requests.org/en/latest/index.html
33https://docs.pydantic.dev/latest/

57

Degree in Informatics Engineering
Informatics Project 2024

5.4.1 Sample

With the help of Professors Dr. Paulo Dias and Dr. Samuel Silva, teaching Human-

Computer Interaction, we conducted 16 usability tests. 14 of the participants were students from

ages 19-22 and two were teachers. 4 students had ”some” experience with property management

systems, while all other participants did not have any prior experience with this kind of system.

Forms and raw data obtained from results can be found in Appendix B.

5.4.2 Method

Participants were asked to use our system to complete 6 different tasks, which were based

on common use cases of our system. During the test execution, two forms were filled: an

observers script form, with relevant information obtained while watching participants complete

the different tasks; and a task form, where users answered the problems presented in the tasks

(for example, how many properties were imported from Zooking when connecting to that external

service) and gave them a difficulty rating from 1 to 5, 1 being very difficult and 5 being very

easy. The task form filled by users during task execution and their responses can be found in

Appendix B.

We started each test by giving a small introduction of our system, to contextualize the

different tasks and make sure the participant knew what the system concepts were and an

introduction in what ”centralized property management” meant.

The first task was intended to see if users knew what to do from a completely fresh system

point of view, starting by the ”import properties from external services” use case. They were

requested to import their properties from the Zooking external service and answer how many

were imported, which had them go to the Channel Manager page, click on the connect now

button related to Zooking, and then check the Properties page which had a list with the number

of properties.

The second task had users connect to another external service, ClickAndGo, and check

if those properties had any reservations on May 14th (the day the tests were conducted). This

task had users once again go to the Channel Manager page, and connect to ClickAndGo. After

that, they would either check the dashboard calendar for existing reservations, or the dedicated

Calendar page to see if any reservations were ongoing at that moment.

The third task had users check which amenities a specific property had. The goal was to

check whether finding the property details, such as price, name and amenities, was intuitive.

58

Degree in Informatics Engineering
Informatics Project 2024

The fourth task had the objective of finding the price of a specific property, and have users

check a checkbox to make the property automatically update price with the recommended price.

We wanted to assess whether activating automatic price updates based on our machine learning

algorithm was intuitive, as it was one of our core use cases.

The fifth task tested the ”Create cleaning/maintenance events for a property during a

specific time frame”, and we wanted to see whether doing this seemingly simple task was intuitive

or not.

The sixth and final task had users send a key code to open the door to a specific property

to a client, that had made a reservation.

After completing all tasks and finishing the usability test, participants were prompted to fill

a Post Task Questionnaire in a form, where users gave subjective assessments of usability based

on the System Usability Scale. The Post Task Questionnaire can also be found in Appendix B.

5.4.3 Results

From the obtained data, we not only got direct feedback from participants regarding user

experience related to some of the tasks, but we also had a measure of the system usability, using

the System Usability Scale. Raw data can be found in Appendix B.

The most common feedback from our participants was the following:

• The list of properties in the Properties page should show the service(s) from which a

property was imported

• The reservations table in the Property Details page requires scrolling, and its position is

not obvious; many people mistakenly scrolled down and found it.

• In the reservation table, hide reservations from the past by default and only show presen-

t/future reservations, while keeping the possibility of showing past reservations

• Property details page has too much information, and the details of the actual property,

which rarely change, were the first thing users saw, instead of current and future reserva-

tions

• Having no visual queue or feedback in the ”Updates automatically with best price” check-

box in the Property Details page, makes it hard to know if when you check the checkbox

anything changed

59

Degree in Informatics Engineering
Informatics Project 2024

• Property details page should have a calendar for that given property, so that users can

have a visual representation of upcoming/on-going reservations, instead of having to read

dates in the reservation table

The chart in Figure 26 shows the average score given to each question from participants

when answering the Post Task Questionnaire, which followed the System Usability Scale.

The obtained SUS score was of 78.75.

Figure 26: Average per System Usability Scale question

From the given feedback, we implemented some changes to the user interface to improve

user experience. The following section shows changes that were implemented, and an image

with the before and after of the changes.

Figure 27 shows changes made in the property table in Properties page, related to the

feedback given about including the service(s) from which a property was imported in this table

as a column. In 27.1, a column shows the services from different services from which the property

was imported, and to which changes will be propagated. We also decided to include 27.2, which

allows users to filter that table by the available External Services, and only show properties

imported from a specific service.

60

Degree in Informatics Engineering
Informatics Project 2024

Figure 27: Changes in the property table in Properties page

Figure 28 shows changes made in the Property Details page, related to the feedback about

how difficult it was to find the reservations table and the fact that clicking the checkbox to update

the price automatically based on the recommendation from our dynamic pricing algorithm did

not have any visual feedback.

In 28.1, a small description of what can be done in this page was added in the top of

the page. In 28.2 and 28.4, we added a tool-tip to describe the function of the checkbox,

and an alert as feedback when changes are made to it, respectively. In 28.3, we changed the

previous layout, which simply had the reservations and cleaning/maintenance events tables under

property details, into this layout with tabs.

61

Degree in Informatics Engineering
Informatics Project 2024

Figure 28: Changes in the Property Details page

Figure 29 shows changes applied to the reservation table in the Property Details page,

related to feedback about how seeing old reservations made the table have a lot of useless data,

and finding the useful data (current and future reservations) was difficult.

In 29.1 we added a button with the label ”Show all”/”Show less”, that when clicked,

shows all reservations, or only current/future ones. It also has a tool-tip so users can more

easily understand its behavior.

62

Degree in Informatics Engineering
Informatics Project 2024

Figure 29: Changes in the reservations table in the Property Details page

Figure 30 shows changes in the Properties page when the user still has no imported

properties. During usability tests, we noticed some users started out by exploring the system,

and when stumbling upon this page with an empty table, many were kind of confused.

For that reason, in 30.1, we added a button that redirects users to the ”Channel Manager”

page (previously ”Integrations” page), where users can connect to external services and have

their properties imported.

63

Degree in Informatics Engineering
Informatics Project 2024

Figure 30: Properties page changes

Figure 31 shows changes in the ”Create Event” modal, used as a form for the user to input

data regarding a Cleaning/Maintenance event they might be trying to create.

As requested by user feedback, when the user is in the ”Cleaning Events” tab, clicking the

”Create Event” button should open this modal to create a cleaning event, instead of having the

user pick the type of event they want to create an event for.

In 31.1, the event type is automatically selected to the current selected tab. If the user is

in the ”Maintenance Events” tab, the modal will automatically select the ”Maintenance” as the

event type being created. The same thing applies to cleaning events.

64

Degree in Informatics Engineering
Informatics Project 2024

Figure 31: Create event modal changes in the Property Details page

Figure 32 shows the changes applied to the left-side drawer in our user interface. Some

users pointed out that Integrations was not intuitive, and a different name for this tab would be

better, related to management. A user pointed out Channel Manager as a suggestion, which is

typically the name used by existing property management systems to refer to this tab. In 32.1

changes were applied when it comes to naming of the Integrations tab.

Figure 32: Changes in the left-side drawer, regarding naming of the Integrations tab

65

Degree in Informatics Engineering
Informatics Project 2024

5.5 Data Correlations

The use of the Elasticsearch-Logstash-Kibana (ELK) stack enabled detailed data analy-

sis within PropertEase, facilitating effective correlation establishment. Figure 33 displays the

Kibana dashboard, however, the property data used to create it was simulated. Therefore, al-

though the recommended prices received are based on algorithm-suggested values, it’s important

to note these simulated data may not fully reflect real market values, thereby impacting the al-

gorithm’s price accuracy. Nevertheless, this demonstrates that PropertEase is well-prepared to

perform such analyses with ELK once deployed in a production environment.

Figure 33: Kibana Dashboard (1. - Average Price per Night by Location; 2. - Price Distribution

by Guests and Location; 3. - Distribution of Properties by Location; 4. - Distribution of

Properties by External Service; 5. - Price Comparison: Recommended vs. Current by Location)

The bar chart showing the average price per night by location, displayed in Figure 34,

allows for the analysis of current price trends for properties on PropertEase based on location.

However, many variables can influence the price per night of a property. To complement this

view, a heatmap, shown in Figure 35, was also created to show the distribution of average prices

by location, taking into account the number of guests each property accommodates. These two

graphs provide a comprehensive view of how prices are distributed and which locations have

higher prices.

66

Degree in Informatics Engineering
Informatics Project 2024

Figure 34: Bar Chart with Average Price per Night by Location

Figure 35: Heat Map with Price Distribution by Guests and Location

The pie charts presented in Figure 36 show the percentage distribution of properties by

location (left chart) and by the booking services from which they are imported (right chart).

These charts are essential for understanding which regions PropertEase is most utilized in and

which booking services are most popular among PropertEase users. Such information is valuable

for guiding strategic marketing decisions.

67

Degree in Informatics Engineering
Informatics Project 2024

Figure 36: Pie Charts with Distribution of Properties by Location and External Services

Finally, in Figure 37, a horizontal bar chart is presented comparing the average nightly

price that properties charge guests with the average price recommended by the implemented

machine learning algorithm, by location. This chart simplifies the analysis to determine whether

PropertEase users generally opt for the prices suggested by the algorithm or prefer to maintain

their own prices. Additionally, it helps conclude whether users tend to set prices above or below

the algorithm’s recommendations.

In this way, conclusions can be drawn regarding users’ perception of the price recommen-

dation algorithm and whether adjustments are needed to improve the accuracy of the recom-

mendations.

Figure 37: Bar Graph with Price Comparison

68

Degree in Informatics Engineering
Informatics Project 2024

6 Discussion

6.1 Usability Tests

The usability tests done successfully gave an idea of how usable the system was, with much

feedback to improve user experience based on the System Usability Scale. (Brooke (1995))

The obtained System Usability Scale (SUS) score, of 78.75 (as mentioned in the Results

section) is above the average 68 (Sauro and Lewis (2016)), which meant most of the system was

usable, but this is highly dependent on the tasks presented to users, which did not fully cover

some more specific use-cases of the system, such as:

• When updating price of a property, choose revenue method based on commission

• View recommended price

• Filter calendar view by a specific property or platform

• View property status (e.g. free, occupied, ...) and filter properties by status

That effectively means some use cases were left untested, which leaves uncertainty about

the quality of user experience for those. Still, most of the use-cases the system supports were

tested, including core use-cases:

• Import listings from one or more listing services

• View synchronized properties calendar

• View properties list

• Manage cleaning/maintenance events

• Set automatic price update based on recommended price

• View property events (reservations, cleaning/maintenance events)

• Send property door key to client through e-mail

Feedback obtained was extremely important for shaping a greater user experience by

implementing requested changes. In the future, a second round of tests, including new changes

obtained from given feedback and extra tasks for untested use-cases, would be instrumental

to making sure the system provides a great user experience for users that might not have any

experience using property management systems like PropertEase.

69

Degree in Informatics Engineering
Informatics Project 2024

6.2 Price Recommendation

Regarding the measurable results, the values obtained were acceptable. However, they

were based only on testing with Lisbon properties, so they might vary when testing with other

locations. In fact, more data from different cities would be needed to train and test the model so

that more conclusive results could be obtained. This limitation becomes even more important

due to the usage of latitude and longitude as features.

As for the unmeasured results, they impose some uncertainty about the quality of the

price recommendation. For example, it isn’t possible to ensure the logarithmic equation used is

the optimal one, or that it really reflects trends on price in a optimal way. The same happens

for the weights used in feature comparison (Figure 5) and the weights used on the weighted

mean to calculate the final recommended price, since both were based on observation and our

own assumptions.

Another limitation is the search queries used on the Google Trends analysis. Issues such

as two cities with the same name or with name included in other’s names such as ”Porto” and

”Porto Alegre”, or the inability to ensure all ”bad trends” will be caught by the algorithm check,

may jeopardize the price recommendation by this component.

Given all these limitations, it’s important to note however, that the weights used for

the final recommendation guarantee a good balance between the components, which attenuates

the individual problems each one has. Additionally, while some are tied to the nature of the

process and harder to fix (e.g. Google Trends), some of those limitations such as the data

shortage could easily be fixed the moment the data becomes available. One way to do that

would be, once PropertEase has a good portion of properties from different locations, to use

those properties to train the model. That way, the real quality of the model could be measured

and improved if needed.

70

Degree in Informatics Engineering
Informatics Project 2024

7 Conclusion

7.1 Summary

This report outlined the full process of developing PropertEase. It starts out by a detailed

analysis of existing solutions, in order to assess what our system should support to be competitive

and to have an edge in the property management system business. This detailed analysis is

found in Chapter 2. From that analysis, we concluded that most competitors supported core

functionalities of property management, such as managing property prices and reservations from

a unified view, but none of them supported a built-in price recommendation algorithm that aims

to maximize a property owner’s revenue while minimizing manual tedious work.

This investigation led to Chapter 3, where we detailed the requirements we needed to fill,

to provide a streamlined property management experience to property owners. We outlined

functional requirements, non-functional requirements, system actors and a detailed list of use-

cases PropertEase needs to fulfill to provide added value to our clients.

In Chapter 4, we thoroughly explained our system architecture, which follows the microser-

vices architectural pattern, aimed at modularity and decoupling of the different components of

PropertEase. That is exceptionally important considering the need to support different listing

services over time, ideally without requiring architectural changes. We also comprehensively de-

scribed our price recommendation algorithm, including the different sub-components that lead

to the final price recommendation, such as the machine learning model and the property features

used, the Google Trends analysis of property locations and the internal price variation.

Following the full architecture specification, the next logical step was implementation of

PropertEase using the previously detailed technologies - FastAPI for the RESTful API our

microservices provide, RabbitMQ as a message broker for asynchronous communication, ELK

stack in the analytics service for data analysis using Kibana and React Typescript for our user

interface. We also obtained and trained our model and implemented each component specified

in the architecture. The results from this implementation are disclosed in Chapter 5 - it includes

an analysis of our machine learning model validation process, the implemented use cases, some

measures for quality assurance and a detailed analysis of the usability tests performed by users

to outline possible problems with our user interface and improvements that were made based on

the feedback given.

Chapter 6 includes a critical view of the results obtained - the effectiveness of our usability

71

Degree in Informatics Engineering
Informatics Project 2024

tests and its results, and limitations our price recommendation algorithm has, based on the

methodology and data used.

7.2 Main Results

PropertEase has successfully achieved its main goal of creating a centralized property

management platform, having successfully implement the following features and benefits:

• Importing of properties from different listing services;

• Synchronizing calendars from all connected listing services. This means that when

a booking is made in one of the listing services, PropertEase will forward that information

to all the other connected services and update the calendars. The same applies when a

property owner creates an event in PropertEase, such as cleaning or maintenance, which

makes a property unavailable for some time.

• Implementation of a dynamic pricing adjustment algorithm. This is a machine learn-

ing powered algorithm that, based on some details of the property, prices of others proper-

ties in the market and Google Trends for the property location, recommends the best price

for a property. This will help property owners to easily and quickly maintain an optimal

price in line with the market trends.

• Implementation of tools to allow editing property details in PropertEase, ensuring these

changes are reflected across all the listing services.

• Implementation of the feature that allows the property owner to send the door key via

email to the guest of a reservation. The property owner can quickly view bookings for

each property and check upcoming check-ins, streamlining processes such as key delivery

directly thought PropertEase.

• Management of events, such as cleaning and maintenance. From PropertEase,

owners can manage some events that may affect the property’s availability. When creating

one of those events, this information is sent back to the listing services where the property

is listed and closes the calendar for the corresponding dates to avoid bookings during those

periods.

• Development of a user-friendly and intuitive interface for users, based on conducted

usability tests, aimed to ensure pleasant usage of PropertEase.

• Data analysis using Elasticsearch-Logstash-Kibana (ELK) provides the visualization of

72

Degree in Informatics Engineering
Informatics Project 2024

various data correlations, for example, in the perception and use of the dynamic pricing

adjustment algorithm by the property owners. It also allows the determination of trends

in use, definition os marketing strategies and the identification of improvements that can

be adopted.

7.3 Future Work

In the future, remaining unimplemented use cases would be fully implemented, these

include:

• Administrator Use Cases:

1. Remove user account: allowing the administrator to remove a particular user from

the system, when explicitly requested

2. Remove property: allowing the administrator to remove a particular property from

a certain user, when explicitly requested

• Property Owner Use Cases:

1. View general statistics: allowing the property owner to view statistics about his

properties and reservations, related to revenue or occupation

2. View property on chosen linked listing service: allowing the user to view a

URL that redirects him to his property on a given external listing service

3. Set extra (cleaning, maintenance...) costs: allowing the property owner to add

extra costs to his property which would alter the final cost per night when setting

the price of a property

4. Set reservation acceptance type (automatic/manual): allowing the property

owner to decide whether to allow PropertEase to automatically accept reservations

when they are made (and consequently propagate them to all relevant listing services)

or to manually accept reservations based on the their judgment

Apart from these unimplemented features, we would lead our efforts into optimizing scal-

ability. Scalability was one of our priorities when designing our architecture, but, in particular,

the Website Wrappers could be optimized, by re-designing them to have multiple instances of

wrappers for each listing service. This way, we could distribute the load of scheduled events,

which are not frequent (but consume a lot of computational and network resources), across

multiple replicas, increasing performance and availability.

73

Degree in Informatics Engineering
Informatics Project 2024

Furthermore, regarding the detection of duplicated properties in the Property Service there

is one aspect which could be improved upon. In the Property Service, it would be convenient to

have a mechanism to merge property details when importing a duplicated property, rather than

keeping just the details from the firstly imported property that originally came from another

service.

Another important future step would be to validate user interface changes applied after

this first round of usability tests, by having a second round of usability tests. This second round

should include more tasks and try to evaluate all use cases the user can perform, to ensure that

the end user experience is great for all parts of the system.

An important note is that the current way of sending data to Elasticsearch, documents

are split by property, and whenever new data is sent, the previous data gets replaced. So if one

wants to use Elasticsearch in order to check price recommendations over time to identify potential

peaks from Google Trends, the method of sending data to Elasticsearch needs to be changed:

instead of using the property ID as the document ID, create a new ID for each submission and

include a timestamp as an attribute so that all data is stored, allowing for historic analysis of

price recommendations.

Moreover, it would be interesting to perform tests to validate the non-functional require-

ments of performance, scalability, reliability and availability that were defined, and to enforce

complete GDPR compliance given the ATT project context.

Finally, as mentioned in Chapter 6, the algorithm could be improved by using data from

different cities, which could be achieved by using PropertEase’s properties. Additionally, without

the limitation of using simulated properties, it would be possible to measure the results and

improve each component as needed.

74

Degree in Informatics Engineering
Informatics Project 2024

Glossary

Channel Manager a manager that handles the connection of a property to a variety of prop-

erty listing websites/channels . 7

75

Degree in Informatics Engineering
Informatics Project 2024

References

J. Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind., 189, 11 1995.

G. Dinis, Z. Breda, C. Costa, and O. Pacheco. Google trends in tourism and hospitality research:

a systematic literature review. Journal of Hospitality and Tourism Technology, ahead-of-print,

08 2019. doi: 10.1108/JHTT-08-2018-0086.

M. L. O. Freitas. Helping people in lisbon to predict airbnb prices, 2022. URL https://www.

kaggle.com/code/maurylukas/helping-people-in-lisbon-to-predict-airbnb-prices.

Last accessed 5 March 2024.

InsideAirbnb. Inside airbnb: Get the data, 2024. URL https://insideairbnb.com/

get-the-data. Last accessed 5 March 2024.

I. Instituto Nacional de Estatística. Estatísticas do turismo - 2022, 2022.

I. Instituto Nacional de Estatística. Resultados preliminares 2023, 2024. URL

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_

boui=593971813&DESTAQUESmodo=2. Last accessed 1 March 2024.

J. Sauro and J. R. Lewis. Quantifying the user experience: Practical statistics for user research.

Morgan Kaufmann, 2016.

76

https://www.kaggle.com/code/maurylukas/helping-people-in-lisbon-to-predict-airbnb-prices
https://www.kaggle.com/code/maurylukas/helping-people-in-lisbon-to-predict-airbnb-prices
https://insideairbnb.com/get-the-data
https://insideairbnb.com/get-the-data
https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=593971813&DESTAQUESmodo=2
https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=593971813&DESTAQUESmodo=2

Degree in Informatics Engineering
Informatics Project 2024

8 Appendix A - Business Layer API Documentation

8.1 User Service API documentation

77

UserService
/api/UserService/openapi.json

The User Service exposes many endpoints for handling user account creation/signing in, and connecting
users to external listing services. It also triggers workflows related to importing external data, such as
scheduled messages for importing new properties and new reservations.

Servers

/api/UserService Authorize

healthcheck

GETGET /health Perform a Health Check

Try it out

No parameters

Responses

Code Description Links

200 Return HTTP Status Code 200 (OK)

Media type

application/json
Controls Accept header.

Schema

No links

 1.0.0 OAS 3.1

Parameters

Example Value

"string"

01/06/24, 14:36 UserService - Swagger UI

localhost/api/UserService/docs#/Client/connect_to_service_services_post 1/6

Client

GETGET /users Get user account information

Get user account information, given the bearer token received from Firebase authentication.

Try it out

No parameters

Responses

Code Description Links

200 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

404 User not found

Media type

application/json

No links

Parameters

Example Value

{
 "email": "user@example.com",
 "id": 0,
 "connected_services": [
 {
 "title": "zooking"
 }
]
}

Example Value

{
 "detail": "User not found"
}

01/06/24, 14:36 UserService - Swagger UI

localhost/api/UserService/docs#/Client/connect_to_service_services_post 2/6

POSTPOST /users Create a new user account

Create a new user account, given the bearer token received from Firebase authentication.

Try it out

No parameters

Responses

Code Description Links

201 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

400 Email already registered

Media type

application/json

No links

GETGET /services List all available listing services

Get a list of all available listing services that can be connected to.

Parameters

Example Value

{
 "email": "user@example.com",
 "id": 0,
 "connected_services": []
}

Example Value

{
 "detail": "Email already registered"
}

01/06/24, 14:36 UserService - Swagger UI

localhost/api/UserService/docs#/Client/connect_to_service_services_post 3/6

Try it out

No parameters

Responses

Code Description Links

200 List all available listing services

Media type

application/json
Controls Accept header.

Schema

No links

POSTPOST /services Connect to an external listing service

Connect to an external listing service, given the service title.

Try it out

No parameters

Request body application/json

Schema

Parameters

Example Value

[
 {
 "title": "zooking"
 },
 {
 "title": "clickandgo"
 },
 {
 "title": "earthstayin"
 }
]

Parameters

required

Example Value

01/06/24, 14:36 UserService - Swagger UI

localhost/api/UserService/docs#/Client/connect_to_service_services_post 4/6

Responses

Code Description Links

201 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

400 User is already connected to that service

Media type

application/json

No links

404 User not found

Media type

application/json

No links

422 Validation Error No links

{
 "title": "zooking"
}

Example Value

{
 "email": "user@example.com",
 "id": 0,
 "connected_services": [
 {
 "title": "zooking"
 }
]
}

Example Value

{
 "detail": "User is already connected to that service"
}

Example Value

{
 "detail": "User not found"
}

01/06/24, 14:36 UserService - Swagger UI

localhost/api/UserService/docs#/Client/connect_to_service_services_post 5/6

Code Description Links

Media type

application/json

Schema

Schemas

AvailableService Expand all string

HTTPValidationError Expand all object

Service Expand all object

User Expand all object

ValidationError Expand all object

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

01/06/24, 14:36 UserService - Swagger UI

localhost/api/UserService/docs#/Client/connect_to_service_services_post 6/6

Degree in Informatics Engineering
Informatics Project 2024

8.2 Property Service API documentation

84

PropertyService
/api/PropertyService/openapi.json

The Property Service exposes many endpoints for manipulating data related to properties, such as updating
properties as obtaining data related to them, such as available amenities, bed types and bathroom fixtures. All
endpoints require authorization, verified by the Authorization bearer token.

Servers

/api/PropertyService Authorize

healthcheck

GETGET /health Perform a Health Check

Try it out

No parameters

Responses

Code Description Links

200 Return HTTP Status Code 200 (OK)

Media type

application/json
Controls Accept header.

Schema

No links

 1.0.0 OAS 3.1

Parameters

Example Value

"string"

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 1/9

properties

GETGET /properties List all properties for a specific user.

Try it out

No parameters

Responses

Code Description Links

200 Return a list of all properties for a user, based on his authorization
token.

Media type

application/json
Controls Accept header.

Schema

No links

Parameters

Example Value

[
 {
 "_id": 0,
 "user_email": "user@example.com",
 "title": "string",
 "address": "string",
 "location": "string",
 "description": "string",
 "price": 0,
 "number_guests": 0,
 "square_meters": 0,
 "bedrooms": {
 "bedroom1": {
 "beds": [
 {
 "number_beds": 2,
 "type": "single"
 }
]
 }
 },
 "bathrooms": {
 "bathroom1": {
 "fixtures": [
 "bathtub",
 "shower"
]
 }

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 2/9

GETGET /properties/{prop_id} Get a specific property for a specific user.

Try it out

Name Description

prop_id *
integer

(path)

prop_id

Responses

Code Description Links

200 Return a specific property for a user, based on his authorization
token.

Media type

application/json
Controls Accept header.

Schema

No links

Parameters

required

Example Value

{
 "_id": 0,
 "user_email": "user@example.com",
 "title": "string",
 "address": "string",
 "location": "string",
 "description": "string",
 "price": 0,
 "number_guests": 0,
 "square_meters": 0,
 "bedrooms": {
 "bedroom1": {
 "beds": [
 {
 "number_beds": 2,
 "type": "single"
 }
]
 }
 },
 "bathrooms": {
 "bathroom1": {
 "fixtures": [
 "bathtub",
 "shower"
]
 }
 },

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 3/9

Code Description Links

404 Property not found for given user.

Media type

application/json

No links

422 Validation Error

Media type

application/json

Schema

No links

PUTPUT /properties/{prop_id} Update a specific property for a specific user.

Try it out

Name Description

prop_id *
integer

(path)

prop_id

Request body application/json

Schema

Example Value

{
 "detail": "Property 0 not found for user user@example.com."
}

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

required

Example Value

{
 "title": "string",
 "address": "string",

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 4/9

Responses

Code Description Links

200 Return the updated property for a user, based on his authorization
token.

Media type

application/json
Controls Accept header.

Schema

No links

 "location": "string",
 "description": "string",
 "price": 0,
 "number_guests": 0,
 "square_meters": 0,
 "bedrooms": {
 "bedroom1": {
 "beds": [
 {
 "number_beds": 2,
 "type": "single"
 }
]
 }
 },
 "bathrooms": {
 "bathroom1": {
 "fixtures": [
 "bathtub",
 "shower"
]
 }
 },
 "amenities": [
 "free_wifi"

Example Value

{
 "_id": 0,
 "user_email": "user@example.com",
 "title": "string",
 "address": "string",
 "location": "string",
 "description": "string",
 "price": 0,
 "number_guests": 0,
 "square_meters": 0,
 "bedrooms": {
 "bedroom1": {
 "beds": [
 {
 "number_beds": 2,
 "type": "single"
 }
]
 }
 },

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 5/9

Code Description Links

404 Property not found for given user.

Media type

application/json

No links

422 Validation Error

Media type

application/json

Schema

No links

GETGET /amenities List all available amenities.

Try it out

No parameters

Responses

 "bathrooms": {
 "bathroom1": {
 "fixtures": [
 "bathtub",
 "shower"
]
 }

},

Example Value

{
 "detail": "Property 0 not found for user user@example.com."
}

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 6/9

Code Description Links

200 Return a list of all available amenities.

Media type

application/json
Controls Accept header.

Schema

No links

GETGET /bathroom_fixtures List all available bathroom fixtures.

Try it out

No parameters

Responses

Code Description Links

200 Return a list of all available bathroom fixtures.

Media type

application/json
Controls Accept header.

Schema

No links

GETGET /bed_types List all available bed types.

Example Value

[
 "free_wifi",
 "parking_space",
 "air_conditioner",
 "pool",
 "kitchen"
]

Parameters

Example Value

[
 "bathtub",
 "shower",
 "bidet",
 "toilet"
]

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 7/9

Try it out

No parameters

Responses

Code Description Links

200 Return a list of all available bed types.

Media type

application/json
Controls Accept header.

Schema

No links

Schemas

Amenity Expand all string

Bathroom Expand all object

BathroomFixture Expand all string

Bed Expand all object

BedType Expand all string

Bedroom-Input Expand all object

Parameters

Example Value

[
 "single",
 "queen",
 "king"
]

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 8/9

Bedroom-Output Expand all object

Contact Expand all object

HTTPValidationError Expand all object

HouseRules Expand all object

Property Expand all object

Service Expand all string

TimeSlot Expand all object

UpdateProperty Expand all object

ValidationError Expand all object

01/06/24, 14:37 PropertyService - Swagger UI

localhost/api/PropertyService/docs#/properties/get_bed_types_bed_types_get 9/9

Degree in Informatics Engineering
Informatics Project 2024

8.3 Calendar Service API documentation

94

CalendarService
/api/CalendarService/openapi.json

The Calendar Service exposes many endpoints for manipulating data displayed in the calendar, including
reservations and cleaning/maintenance (management) events. It also allows users to handle key management
for their properties. All events endpoints require authorization, verified by the Authorization bearer token.

Servers

/api/CalendarService Authorize

healthcheck

GETGET /health Perform a Health Check

Try it out

No parameters

Responses

Code Description Links

200 Return HTTP Status Code 200 (OK)

Media type

application/json
Controls Accept header.

Schema

No links

 1.0.0 OAS 3.1

Parameters

Example Value

"string"

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 1/19

events

GETGET /events/management/types List available management event types.

Try it out

No parameters

Responses

Code Description Links

200 Return a list of all available management event types.

Media type

application/json
Controls Accept header.

Schema

No links

GETGET /events List all events of a specific user, including reservations and
cleaning/maintenance events.

Try it out

Name Description

reservation_status *
string

(query)

Available values : confirmed, pending, canceled

Responses

Parameters

Example Value

[
 "maintenance",
 "cleaning"
]

Parameters

required

confirmed

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 2/19

Code Description Links

200 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422 Validation Error

Media type

application/json

Schema

No links

GETGET /events/management/maintenance List of maintenance events related to a user and his
properties

Returns list of maintenance events related to all, or a specific property, of a specific user based on his
authorization bearer token.

Try it out

Example Value

[
 {
 "id": 0,
 "property_id": 0,
 "owner_email": "user@example.com",
 "begin_datetime": "2024-06-01T13:37:50.829Z",
 "end_datetime": "2024-06-01T13:37:50.829Z",
 "type": "cleaning",
 "service": "zooking"
 }
]

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 3/19

Name Description

property_id
integer

(query)

property_id

Responses

Code Description Links

200 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422 Validation Error

Media type

application/json

Schema

No links

Example Value

[
 {
 "id": 0,
 "property_id": 0,
 "owner_email": "user@example.com",
 "begin_datetime": "2024-06-01T13:37:50.833Z",
 "end_datetime": "2024-06-01T13:37:50.833Z",
 "type": "maintenance",
 "company_name": "string"
 }
]

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 4/19

POSTPOST /events/management/maintenance Create new maintenance event

Creates a new maintenance event for the specified property and the given timeframe

Try it out

No parameters

Request body application/json

Schema

Responses

Code Description Links

201 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

404 Specified property for creating event does not exist.

Media type

application/json

No links

Parameters

required

Example Value

{
 "company_name": "Maintenance Lda.",
 "property_id": "1",
 "begin_datetime": "2024-05-30T10:37:34",
 "end_datetime": "2024-05-31T10:37:34"
}

Example Value

{
 "id": 0,
 "property_id": 0,
 "owner_email": "user@example.com",
 "begin_datetime": "2024-06-01T13:37:50.837Z",
 "end_datetime": "2024-06-01T13:37:50.837Z",
 "type": "maintenance",
 "company_name": "string"
}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 5/19

Code Description Links

409 There are overlapping events with the event to be created.

Media type

application/json

No links

422 Validation Error

Media type

application/json

Schema

No links

GETGET /events/management/cleaning List of cleaning events related to a user and his
properties

Returns list of cleaning events related to all, or a specific property, of a specific user based on his
authorization bearer token.

Try it out

Example Value

{
 "detail": "There are no registered properties for email user@exampl
e.com which you can create events for."
}

Example Value

{
 "detail": "There are overlapping events with the event with begin_da
tetime 2024-05-30T10:37:34 and end_datetime 2024-05-31T10:37:34."
}

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 6/19

Name Description

property_id
integer

(query)

property_id

Responses

Code Description Links

200 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422 Validation Error

Media type

application/json

Schema

No links

Example Value

[
 {
 "id": 0,
 "property_id": 0,
 "owner_email": "user@example.com",
 "begin_datetime": "2024-06-01T13:37:50.841Z",
 "end_datetime": "2024-06-01T13:37:50.841Z",
 "type": "cleaning",
 "worker_name": "string"
 }
]

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 7/19

POSTPOST /events/management/cleaning Create new cleaning event

Creates a new cleaning event for the specified property and the given timeframe

Try it out

No parameters

Request body application/json

Schema

Responses

Code Description Links

201 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

404 Specified property for creating event does not exist.

Media type

application/json

No links

Parameters

required

Example Value

{
 "worker_name": "Great person",
 "property_id": "1",
 "begin_datetime": "2024-05-30T10:37:34",
 "end_datetime": "2024-05-31T10:37:34"
}

Example Value

{
 "id": 0,
 "property_id": 0,
 "owner_email": "user@example.com",
 "begin_datetime": "2024-06-01T13:37:50.846Z",
 "end_datetime": "2024-06-01T13:37:50.846Z",
 "type": "cleaning",
 "worker_name": "string"
}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 8/19

Code Description Links

409 There are overlapping events with the event to be created.

Media type

application/json

No links

422 Validation Error

Media type

application/json

Schema

No links

GETGET /events/reservation List of reservations related to a user and his properties.

Returns list of reservations related to all, or a specific property, of a specific user based on his
authorization bearer token.

Try it out

Example Value

{
 "detail": "There are no registered properties for email user@exampl
e.com which you can create events for."
}

Example Value

{
 "detail": "There are overlapping events with the event with begin_da
tetime 2024-05-30T10:37:34 and end_datetime 2024-05-31T10:37:34."
}

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 9/19

Name Description

property_id
integer

(query)

property_id

Responses

Code Description Links

200 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422 Validation Error

Media type

application/json

Schema

No links

Example Value

[
 {
 "id": 0,
 "property_id": 0,
 "owner_email": "user@example.com",
 "begin_datetime": "2024-06-01T13:37:50.853Z",
 "end_datetime": "2024-06-01T13:37:50.853Z",
 "type": "reservation",
 "service": "zooking",
 "reservation_status": "confirmed",
 "client_email": "user@example.com",
 "client_name": "string",
 "client_phone": "strings",
 "cost": 0
 }
]

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 10/19

Code Description Links

PUTPUT /events/management/maintenance
/{event_id} Update maintenance event

Updates the maintenance event with the given id and the specified parameters. If the begin_datetime or
end_datetime parameters are updated, the system will check for overlapping events.

Try it out

Name Description

event_id *
integer

(path)

event_id

Request body application/json

Schema

Responses

Code Description Links

200 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

]
}

Parameters

required

required

Example Value

{
 "begin_datetime": "2024-03-21T11:00:00",
 "end_datetime": "2024-03-21T12:00:00",
 "company_name": "John Doe's Company"
}

Example Value

{
 "id": 0,

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 11/19

Code Description Links

404 Specified event for updating does not exist.

Media type

application/json

No links

409 There are overlapping events with the given time interval for the
event to be updated.

Media type

application/json

No links

422 Validation Error

Media type

application/json

Schema

No links

DELETEDELETE /events/management/maintenance
/{event_id} Delete maintenance event

 "property_id": 0,
 "owner_email": "user@example.com",
 "begin_datetime": "2024-06-01T13:37:50.858Z",
 "end_datetime": "2024-06-01T13:37:50.858Z",
 "type": "maintenance",
 "company_name": "string"
}

Example Value

{
 "detail": "Event of type maintenance with id 0 not found for email u
ser@example.com."
}

Example Value

{
 "detail": "There are overlapping events with the event with begin_da
tetime 2024-03-21T11:00:00 and end_datetime 2024-03-21T12:00:00."
}

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 12/19

Deletes the maintenance event with the given id.

Try it out

Name Description

event_id *
integer

(path)

event_id

Responses

Code Description Links

204 Event deleted successfully.

Media type

application/json
Controls Accept header.

No links

404 Specified event for deletion does not exist.

Media type

application/json

No links

422 Validation Error

Media type

application/json

No links

Parameters

required

Example Value

{}

Example Value

{
 "detail": "Event of type maintenance with id 0 for email user@exampl
e.com not found."
}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 13/19

Code Description Links

Schema

PUTPUT /events/management/cleaning/{event_id} Update cleaning event

Updates the cleaning event with the given id and the specified parameters. If the begin_datetime or
end_datetime parameters are updated, the system will check for overlapping events.

Try it out

Name Description

event_id *
integer

(path)

event_id

Request body application/json

Schema

Responses

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

required

Example Value

{
 "begin_datetime": "2024-03-21T11:00:00",
 "end_datetime": "2024-03-21T12:00:00",
 "worker_name": "John Doe"
}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 14/19

Code Description Links

200 Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

404 Specified event for updating does not exist.

Media type

application/json

No links

409 There are overlapping events with the given interval for the event
to be updated.

Media type

application/json

No links

422 Validation Error

Media type

application/json

Schema

No links

Example Value

{
 "id": 0,
 "property_id": 0,
 "owner_email": "user@example.com",
 "begin_datetime": "2024-06-01T13:37:50.867Z",
 "end_datetime": "2024-06-01T13:37:50.867Z",
 "type": "cleaning",
 "worker_name": "string"
}

Example Value

{
 "detail": "Event of type cleaning with id 0 not found for email user
@example.com."
}

Example Value

{
 "detail": "There are overlapping events with the event with begin_da
tetime 2024-03-21T11:00:00 and end_datetime 2024-03-21T12:00:00."
}

Example Value

{
 "detail": [
 {

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 15/19

Code Description Links

DELETEDELETE /events/management/cleaning/{event_id} Delete cleaning event

Deletes the cleaning event with the given id.

Try it out

Name Description

event_id *
integer

(path)

event_id

Responses

Code Description Links

204 Event deleted successfully.

Media type

application/json
Controls Accept header.

No links

404 Specified event for deletion does not exist.

Media type

No links

 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

Example Value

{}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 16/19

Code Description Links

application/json

422 Validation Error

Media type

application/json

Schema

No links

POSTPOST /events/reservation/{reservation_id}
/email_key Send email with key to reservation client

Sends an email to the client of the reservation with the given id. The email contains the key to the
property.

Try it out

Name Description

reservation_id *
integer

(path)

reservation_id

Request body application/json

Schema

Example Value

{
 "detail": "Event of type cleaning with id 0 for email user@example.c
om not found."
}

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

required

Example Value

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 17/19

Responses

Code Description Links

204 Successful Response.

Media type

application/json
Controls Accept header.

No links

404 Reservation with the given id for the email does not exist.

Media type

application/json

No links

422 Validation Error

Media type

application/json

Schema

No links

{
 "key": "string"
}

Example Value

{}

Example Value

{
 "detail": "Reservation with id 0 for the email user@example.com not
found."
}

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 18/19

Code Description Links

Schemas

Base Expand all object

CleaningWithId Expand all object

HTTPValidationError Expand all object

KeyInput Expand all object

MaintenanceWithId Expand all object

ReservationStatus Expand all string

ReservationWithId Expand all object

Service Expand all string

UniformEventWithId Expand all object

ValidationError Expand all object

]
}

01/06/24, 14:37 CalendarService - Swagger UI

localhost/api/CalendarService/docs#/events/send_email_with_key_events_reservation__reservation_id__email_key_post 19/19

Degree in Informatics Engineering
Informatics Project 2024

114

Degree in Informatics Engineering
Informatics Project 2024

9 Appendix B - Usability Tests

9.1 Tasks

115

Degree in Informatics Engineering
Informatics Project 2024

116

Degree in Informatics Engineering
Informatics Project 2024

117

Degree in Informatics Engineering
Informatics Project 2024

9.1.1 Tasks Responses

118

Degree in Informatics Engineering
Informatics Project 2024

119

Degree in Informatics Engineering
Informatics Project 2024

120

Degree in Informatics Engineering
Informatics Project 2024

121

Degree in Informatics Engineering
Informatics Project 2024

122

Degree in Informatics Engineering
Informatics Project 2024

9.2 Post Task Questionnaire

123

Degree in Informatics Engineering
Informatics Project 2024

124

Degree in Informatics Engineering
Informatics Project 2024

125

Degree in Informatics Engineering
Informatics Project 2024

126

Degree in Informatics Engineering
Informatics Project 2024

127

Degree in Informatics Engineering
Informatics Project 2024

9.2.1 Post Task Questionnaire Responses

128

Degree in Informatics Engineering
Informatics Project 2024

129

Degree in Informatics Engineering
Informatics Project 2024

130

Degree in Informatics Engineering
Informatics Project 2024

131

Degree in Informatics Engineering
Informatics Project 2024

132

Degree in Informatics Engineering
Informatics Project 2024

133

Degree in Informatics Engineering
Informatics Project 2024

134

Degree in Informatics Engineering
Informatics Project 2024

10 Appendix C - Example Property Schema

1 {

2 "id": 1,

3 "user_email": "someemail@gmail.com",

4 "title": "Coolest house ever",

5 "address": "Braga (obvio que nao)",

6 "location": "Porto",

7 "description": "Dont enter",

8 "price": 100,

9 "number_guests": 20,

10 "square_meters": 4000,

11 "bedrooms": {

12 "bedroom_1": {

13 "beds": [

14 {

15 "number_beds": 1,

16 "type": "single"

17 }

18]

19 }

20 },

21 "bathrooms": {

22 "bathroom_1": {

23 "fixtures": [

24 "bathtub",

25 "shower"

26]

27 }

28 },

29 "amenities": [

30 "free_wifi",

31 "pool",

32 "kitchen"

135

Degree in Informatics Engineering
Informatics Project 2024

33],

34 "after_commission": false,

35 "house_rules": {

36 "check_in": {

37 "begin_time": "10:59",

38 "end_time": "20:40"

39 },

40 "check_out": {

41 "begin_time": "10:59",

42 "end_time": "20:40"

43 },

44 "smoking": false,

45 "parties": true,

46 "rest_time": {

47 "begin_time": "23:00",

48 "end_time": "06:00"

49 },

50 "allow_pets": true

51 },

52 "additional_info": "So pessoas fixes",

53 "cancellation_policy": ��"",

54 "contacts": [

55 {

56 "name": "Alvaro Barbosa",

57 "phone_number": "+351969314716"

58 }

59],

60 "services":[],

61 "recommended_price": 95,

62 "update_price_automatically": false

63 }

136

Degree in Informatics Engineering
Informatics Project 2024

11 Appendix D - Contract Test Source Code Example

import pyte s t

import r eque s t s

from api_schemas . zooking_schema import ZookingPropertyBase

from api_schemas . base_schema import Reservat ionBase

from pydantic import Val idat i onError

ZOOKING_URL = ” http :// l o c a l h o s t :8000 ”

def test_zooking_property_schema () :

zooking_property = reque s t s . get (f ”{ZOOKING_URL}/ p r o p e r t i e s /1”)

try :

ZookingPropertyBase . model_val idate (zooking_property . j son ())

except (Val idat ionError , r eque s t s . except i on s . JSONDecodeError) :

pyte s t . f a i l (” Fa i l ed to v a l i d a t e Zooking API property schema . ”)

def test_zooking_reservation_schema () :

t h i s endpoint r e turns an array o f r e s e r v a t i o n s f o r proper ty 10

zook ing_rese rvat ion = reque s t s . get (f ”{ZOOKING_URL}/ r e s e r v a t i o n s /9”)

try :

Reservat ionBase . model_val idate (zook ing_rese rvat ion . j son () [0])

except (Val idat ionError , r eque s t s . except i on s . JSONDecodeError) :

pyte s t . f a i l (” Fa i l ed to v a l i d a t e Zooking API r e s e r v a t i o n schema . ”)

137

Degree in Informatics Engineering
Informatics Project 2024

138

Degree in Informatics Engineering
Informatics Project 2024

12 Appendix E - Detailed Sequence Diagrams

Figure 38: UML Sequence Diagram of scheduled flow to import properties from external services

139

Degree in Informatics Engineering
Informatics Project 2024

Figure 39: UML Sequence Diagram of scheduled flow to import reservations from external

services

140

	Introduction
	State of the Art
	Requirements Gathering
	Functional Requirements
	Non-Functional Requirements
	Actors
	Use Cases
	Model
	Description

	System Architecture
	Architecture
	Presentation Layer
	Business Layer
	Backoffice Layer
	Message Queue

	Domain Model
	Internal Lifecycle
	Physical and Technological Model
	Price recommendation algorithm
	Property Features ML Model Recommendation
	Google Trends Analysis Recommendation
	Internal Price Variation Recommendation
	Final Price Recommendation
	Price Recommendation Lifecycle

	Results
	Price Recommendation
	Use Cases Materialized
	Quality Assurance
	Contract Tests

	Usability Testing
	Sample
	Method
	Results

	Data Correlations

	Discussion
	Usability Tests
	Price Recommendation

	Conclusion
	Summary
	Main Results
	Future Work

	Appendix A - Business Layer API Documentation
	User Service API documentation
	Property Service API documentation
	Calendar Service API documentation

	Appendix B - Usability Tests
	Tasks
	Tasks Responses

	Post Task Questionnaire
	Post Task Questionnaire Responses

	Appendix C - Example Property Schema
	Appendix D - Contract Test Source Code Example
	Appendix E - Detailed Sequence Diagrams

